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We propose docal strategy for constructing scale-free networks of arbitrary degree distributions, based on
the redirection method of Krapivsky and Rediflehys. Rev. E63, 066123(2001)]. Our method includes a set
of external parameters that can be tuned at will to match detailed behavior at small kiégraédition to the
scale-free power-law tail signature at ladgeOnce achieved, the target distribution is maintained throughout
the growth of the net. The method is local in that addition of a new node requires knowledge of only the
immediate environs of th@andomly selectednode to which it is attachedGlobal strategies require infor-
mation on finite fractions of the growing ngt.
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Recently much effort has been devoted to the study osky and Redne(KR) [7]. Our method includes a set of ex-
large networks that surround us in everyday life, such as theernal parameters that enable fine tuning of additional
Internet and the World Wide Web, the electricity power grid, properties(degree distribution at smal, degree of cluster-
flight connections, social networks of contacts or collaboraing, etc), while guaranteeing a scale-free tail with a given
tions, networks of predator-prey, of neurons in the brain, etc.degree distribution exponent, as in the original KR method.
[1-3]. An important realization is that a majority of these The proposed method is useful for modeling dynamic situa-
networks share some characteristic properties: A smalions and enables one not only arriving at a target distribution
diameter—a small number of links connects between anyfor all ranges of degrek), but also maintaining that distri-
two nodes on the net; clustering, or the small worldbution throughout, as the network grows.
property—the neighbors of a node tend to be connected to Inthe KR redirection model, a new nodés connected to
one another; and a scale-free degree distribution—the distra pre-existing node, selected at randorgwithoutregard to
bution of the number of links emanating from a nodlee  its degreg with probability 1-r. If the connection is estab-

degreek) has a power-law tail of the form lished, x is said to be theancestorof n (the link may be
N regarded as directed, from to x). With probability r, the
P(k) ~ k™. (1) connection is not realized, but instead itredlirectedto v,

. . . ) the ancestor ok (Fig. 1).

The scale-free property gives rise to exotic behavior of the g redirection step is essentially what turns the global
r}etworks,_s_uch as resilience to random dilutidre percola- pga strategy of selecting a node with a probability propor-
tion transmon does not t_a}ke place far<3), on the one yonal to its degree, to a local onéSee[8], for an early
hand, and high vulnerability to removal of the most con-jnyoduction of this basic principle Each node has but one
nected nodes, on the other hand, and has become a princip@|cestor. so a node of degreéask-1 incoming links. It
focus of attentior(4,9]. follows that an ancestor of degréds reached with a prob-

Several growth models that produce scale-free UEtWOVkébi|ity proportional tok-1, but purely through a local pro-
have been suggested. However, most growth techniques refbss The KR technique builds scale-free graphs with degree
on global properties of the network. Such is the case, forexponent}\=1+1/r (that is, 2<\=<%). The BA net corre-
example, for the seminal model of Barabasi and AlljBA) _sponds to the special case BE1/2 (A=3). However, the

[6], where new nodes are connected to an existing node W'tBbtained raphs are alwatrees—thev possess no cvcleéa
a probability proportional to its degree. The BA algorithm grap ye yp yele

requires global knowledge of the degree of all present nodes.
While global algorithms have contributed immensely to our
understanding of how scale-free degree distributions might
emerge, in most common situations it is more likely that
networks evolve by a set dbcal rules.(One does not typi-
cally conduct a survey of the Internet for deciding where to
connect a new router, neither does one study a whole net-
work of social contacts for selecting new acquaintances.
Here we propose #cal strategy for constructing scale-

free networks, based on the redirection technique of Krapiv-

FIG. 1. The KR redirection model. A new node (solid) is
connected to a randomly selected nadewith probability 1-r
(dashed arroyy or the link is redirected to nodg, the ancestor
*Electronic address: rozenfhd@clarkson.edu of x, with probability r (solid thick arrow. After Krapivsky and
"Electronic address: benAvraham@clarkson.edu Redner[7].
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unigque path connects between any two ngdemnd not 0.01¢

much else can be controlled during the growth process, be- i

yond the degree distribution exponent. 0.001;-//r 3
We generalize the redirection algorithm as follows. _

At each time step the new nodeis connected tam dif- & 0.0001¢ 3

ferent preexisting nodes, with probability,, m=1,2,... ‘

(Zmpm=1). Each of them nodes is selected randomly and 0.00001¢ .

independently by the same redirection trick as for a single :

node: direct connection to the selected node with probability 0.000001} T6o 16000

1-r, or redirection to a random ancestor, with probabitity k

The KR model corresponds to the choigg= d,, ;. The pres-
encs OTI an Ir:cltla!d?etwork Sefd’ N(t) ntodtesd, is implied. The =1/100,m=1,2,... 100, andr=0.5(O). The analytical prediction
seed allows lor the process 1o get started. from Egs.(7) and(9) (solid line) is shown for comparison.

A new node is added at each time step, so the total num-
ber of nodes increases as

FIG. 2. Degree distribution of network constructed wiph,

ciably, and replac&1, andM by their long time asymptotic

N(t) =Np + t. (2 limits. From here we proceed as|ifi. The asymptotic equa-
. . (D 1y = (D
In the long time asymptotic limit of>No, N(t)~t. Because tions admit the general solutidd"(t)=n,'t, where
each new node has ancestors with probabilitpy, the av- n’=a(1 -r)n; - n’]
erage number of ancestors of a node at ttnige | |
+rl(k=1=Dng; = (k=DnT+pd, k=1,
k-1 k :
No(m)o +t > mpy,
(m)(t) = : 3 =0, k<l 7
No+t n’'=0, k<I. (7)

where{(m), is the initial average number of ancestors preseniNote thatn(k') is in fact normalized'since N~t) and repre-
in the seed. In the long time asymptotic lim{tn)~=mp,  Sents theprobability that a randomly selected node be of
=a. The average degree of a nogiecluding both incoming degreek and have ancestors.
. . . ; ; ; N — _
and outgoing linksis The solution of the recursiong?) is n/ =II,[1-(1
_ +r)/(rk’+1+a(1-r)—rl)]. Writing the product as the expo-
(k) =2m) ~ 2a. (4) nential of a sum, expanding to first order inkl(for large

Consider nowN!(t), the number of nodes of degrk¢hat k'), and approximating the sum by an integral, one finally

possess exactlyancestors. It evolves according to obtains

dNg'® _ > m {_(1 - r)[Nm N0 n ~ k0, (8)
dt m Pin Mo A The same is true for the overall degree distributjaithout
reference to the number of ancesjors

+$[(k—l—l)NE_l—(k—I)N(k')]}+p|5ky|, k=1, ‘
P(k)=n,= E n(kl) ~ k(L) (9)
=1

NV=0, k<I. (5)

) L _ . This follows from Eqgs.(7), summing overl, noting that
The first term inside the curly brackets describes gains an

) . . . o §|Inf<')=a, and proceeding as far”. _ _
losses due to direct connectiofmcurring with probability We now have at our disposal a simple local algorithm that
1-r), while the additional terms refer to changes due to re-

direction: si h des | on ha h produces scale-free graphs of any desired degree exponent
weg:ﬂs_?. since t ﬁ no fjs mf gueségn d\_/anc_estqrs, the "\ =1+1/r, as well as a set of parametdthe {p,}) that can
probability to reach a node of degre®y redirection is NOW o yyeaked at will to achieve a wide gamut of additional

proportional tok=l, instead ofk=1, as in the original KR = oyip 1tes without affecting. Obvious examples include the

model. Note that the number of ancestors of a node is fixe S _
at birth, and does not change subsequently. The rate for d‘li_verage number of outgoing links from a node) =mp,

rected connections is normalized WO:E,EkNE>:N~t, & .and the averagiz ngde degré,= 2a.' (Note that in the
while for redirected events original KR mode_zlafl is the only pQSS|bIe ou_tcorr)e.
, \ Theldegrr]ee dlS?’I?}Létl?E] z_li_th smdt(l;s detern?llneltlj by thg
: h_ N particular choice of thep,,}. This is dramatically illustrate
M= 2 % (k= I)N(k) - N<<k> - ; WI> 6) in Fig. 2, where we show the degree distribution of a net-
work grown with r=1/2 and p,=1/100 for m
In the long time asymptotic limitN"/N—p, henceM  =1,2,...,100(p,=0 for m>100). In addition to the ex-
~N((ky—a)~at [9]. pected k3 tail, we see a very distinct distribution, for
Due to the time dependence of the rates in &), ana- k<100. The resulting distribution is perfectly reproduced,
lytic integration is not feasible. Instead, we argue that theanalytically, using Eqs(7).
transient time does not affect the ultimate distribution appre- More importantly, the inverse problem is easily solved as
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FIG. 3. Convergence to a target distributi@n) for nets grown FIG. 4. Clustering indexC, for nets constructed in the redirec-
with the analytically computef,’s (insey. Shown are distributions  tion method, withr=0.1,0.2,...,0.9bottom to top and p,,=(1
obtained for networks grown with just the first 4, 8, and d4s =P)8m,1+ PSm 2. Plotted iSC/Cgr, WhereCegr is the clustering index

(solid curve$. Convergence to the target distribution improves with of the equivalent ER grapH4,10Q].
increasing range af.

with probability p: p;=1-p, p,=p (and p,,=0 for m>2).
well. Given a specific distributioR®(k), with a scale-free tail Several networks were grown in this way, with different val-
~K™, it can be produced by the redirection method in theU€s ofr andp. The numerical data strongly support the pre-
following way. Setr=1/(\-1) for the redirection probabil- dicted relatiorn=1+1/r and the independence from tpg,
ity, thus ensuring the desired scale-free tail. Compate The results for clustering are summarized in Figs. 4 and 5.
=(1/2)3kP(k) that is implied by the desired distribution. !N Fig. 4, we plot the ratio of the global cluster coefficient

According to Eq.(7) (averaged over all the sites of the netwoI®, to the cluster
’ coefficient of an equivalent Eéd-Réniy(ER) graph[1,10],
pPn=[1+a(l —r)]nﬁ{{‘). (10) Cer: a@s a function of, for various values of. As might be

) _ _ expected, the clustering index increases wittthough the
The requiredh,” are cor(rl)puted iteratively, from Eq§) and  oftect saturates rather quickly. A more pronounced effect is
(9). From (9) we haven;”=P(1). Using this, and Eqs(7),  achieved by increasing which change€ by orders of mag-
for k=2, 1=1, one can computay”, then obtaimy’=P(2)  nitude (note the logarithmic scajeThis has to do with the
—n(zl) from (9), etc. influence ofr on the degree distribution. To see that, in Fig.
We have followed this procedure to compute thg 5 we plot, for the same data, the ratio 6fto C,,,q—the
needed to grow a network with the target distributionclustering index in equivalent networks, with identical scale-
P(k)=c, 2c, ¢, 2c, for k=1, 2, 3, 4, respectively, and free degree distributions, but where all the connections have
P(k)=2c(k/4)™?5, for k=4, (c=1/10.4359, is determined been redistributed randomly. The dependence seems a
from normalization=P(k) = 1), shown in Fig. 3. As might be lot weaker by this comparison. Figure 5 demonstrates, how-
expected, thep,, decay rapidly withm (in this particular ~ ever, significant differences between random scale-free net-
case,p,~Mm 29 and a reasonably well-fitting distribution is works and nets constructed by the generalized redirection
obtained with justn<4. Increasing the range ofi yields a  method.
better fit to the target. Alternatively, a better fit can be As a final remark, we note that we have tacitly assumed
achieved, for a fixed range of, by treatinga as a variable that the se{p,,} is finite. Indeed, were the set infinite, there
whose value is then optimized. would be no way to even start the growth process, unless one
Another interesting property is the number and distribu-had an infinitely large seed as well, since connecting a node
tion of loops, or cycles, in the growing nets. One measurdo m random nodes requires that there be at l@astodes
of cycles is provided by thelustering indexdefined for site  present to begin with. One way to get around the limitation
i as[11] to finite sets, is by allowing the,, to vary with time. Con-
sider, for example, the “self-consistent” networks grown with

E:
Ci= 1—' (11) ) . . . .
Eki(ki -1
1.5F 1 .
It denotes the ratio betweds, the actual number of links -
between thék; neighbors of the node, to the maximum num- g 1 ~ - Z’E
ber of links that would result had all tHe nodes been con- ) = ]
nected to one another. For trees, the clustering index is zero o5 =0.9 i

at all nodes. In contrast, the proposed generalized KR pro-
cess can produce loops, and hence nonzero clustering, when- .
ever a new node is connected to more than one pite:1 02 04 06 08 1
(or pm>0 for somem>1).

To test this issue we focused on the KR model, but where FIG. 5. Clustering index for the same data as in Fig. 4, but
a newly added node is further connected to a second nod®mpared to equivalent scale-free random grasks text
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0.004 ' ' ' ' We have presented a local strategy—the generalized redi-
10°F rection method—for the growth of scale-free networks. Lo-
0.003- § 1 cal algorithms require information about only the immediate
environs of a visited node, and are more likely to reflect real
0.002- 106 1000 10000 ] growth processes than global algorithms, where addition of
k new nodes requires information about the whole network.
0.001F g The generalized redirection technique includes a class of ex-
ternal parameters, the,, that may be tuned at will, without
affecting the degree exponetwhich is controlled by the
independent parametey, to achieve a variety of effects. We
have explicitly demonstrated how to design nets with arbi-
FIG. 6. Degree distribution of “self-consistent” net grown with trary degree distributions, at small degigeand power-law
pPm=P(m,t). The distribution peaks at a value kfthat increases (scale-freg tails, at largek. We have also shown that addi-
with time, while its tail might be possibly interpreted as scale-freetjgngl attributes, such as the degree of clustering, can be
(inseh: A=1+1/r=3 is consistent with our noisy data. manipulated by a proper choice of the model’s parameters.
: - However, how to do this effectively remains an open ques-
pm(t)_.P(m’t)’. that 1S, where the, refllect. thg existing de- tion. We anticipate that analogous 3z/algorithms to thl?a on?a pre-
gree distribution at timé The degree distribution that results sented for the degree distribution can be designed for other

from this strategy, using=1/2, isshown in Fig. 6. We have : : ;
not attempted analyzing this distribution, because the equsztmbUtes as well, by studying the relevant rate equations.

tions involved are quite more complicated, and we cannot \We thank Erik Bollt for useful discussions, and Sid Red-
think of any serious applications to this curious model. Still,ner for helpful discussions and for providing us with Fig. 1.
it remains an amusing problem that might test the limits ofWe are grateful to NSF Grant No. PHY-0140094 for partial
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the general approach of evolution equations. financial support of this work.
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