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We propose alocal strategy for constructing scale-free networks of arbitrary degree distributions, based on
the redirection method of Krapivsky and Redner[Phys. Rev. E63, 066123(2001)]. Our method includes a set
of external parameters that can be tuned at will to match detailed behavior at small degreek, in addition to the
scale-free power-law tail signature at largek. Once achieved, the target distribution is maintained throughout
the growth of the net. The method is local in that addition of a new node requires knowledge of only the
immediate environs of the(randomly selected) node to which it is attached.(Global strategies require infor-
mation on finite fractions of the growing net.)
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Recently much effort has been devoted to the study of
large networks that surround us in everyday life, such as the
Internet and the World Wide Web, the electricity power grid,
flight connections, social networks of contacts or collabora-
tions, networks of predator-prey, of neurons in the brain, etc.,
[1–3]. An important realization is that a majority of these
networks share some characteristic properties: A small
diameter—a small number of links connects between any
two nodes on the net; clustering, or the small world
property—the neighbors of a node tend to be connected to
one another; and a scale-free degree distribution—the distri-
bution of the number of links emanating from a node(the
degreek) has a power-law tail of the form

Pskd , k−l. s1d

The scale-free property gives rise to exotic behavior of the
networks, such as resilience to random dilution(the percola-
tion transition does not take place forl,3), on the one
hand, and high vulnerability to removal of the most con-
nected nodes, on the other hand, and has become a principal
focus of attention[4,5].

Several growth models that produce scale-free networks
have been suggested. However, most growth techniques rely
on global properties of the network. Such is the case, for
example, for the seminal model of Barabási and Albert(BA)
[6], where new nodes are connected to an existing node with
a probability proportional to its degree. The BA algorithm
requires global knowledge of the degree of all present nodes.
While global algorithms have contributed immensely to our
understanding of how scale-free degree distributions might
emerge, in most common situations it is more likely that
networks evolve by a set oflocal rules.(One does not typi-
cally conduct a survey of the Internet for deciding where to
connect a new router, neither does one study a whole net-
work of social contacts for selecting new acquaintances.)

Here we propose alocal strategy for constructing scale-
free networks, based on the redirection technique of Krapiv-

sky and Redner(KR) [7]. Our method includes a set of ex-
ternal parameters that enable fine tuning of additional
properties(degree distribution at smallk, degree of cluster-
ing, etc.), while guaranteeing a scale-free tail with a given
degree distribution exponent, as in the original KR method.
The proposed method is useful for modeling dynamic situa-
tions and enables one not only arriving at a target distribution
(for all ranges of degreek), but also maintaining that distri-
bution throughout, as the network grows.

In the KR redirection model, a new noden is connected to
a pre-existing nodex, selected at random(without regard to
its degree), with probability 1−r. If the connection is estab-
lished, x is said to be theancestorof n (the link may be
regarded as directed, fromn to x). With probability r, the
connection is not realized, but instead it isredirectedto y,
the ancestor ofx (Fig. 1).

The redirection step is essentially what turns the global
BA strategy of selecting a node with a probability propor-
tional to its degree, to a local one.(See [8], for an early
introduction of this basic principle.) Each node has but one
ancestor, so a node of degreek hask−1 incoming links. It
follows that an ancestor of degreek is reached with a prob-
ability proportional tok−1, but purely through a local pro-
cess. The KR technique builds scale-free graphs with degree
exponentl=1+1/r (that is, 2ølø`). The BA net corre-
sponds to the special case ofr =1/2 sl=3d. However, the
obtained graphs are alwaystrees—they possess no cycles(a
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FIG. 1. The KR redirection model. A new noden (solid) is
connected to a randomly selected nodex with probability 1−r
(dashed arrow), or the link is redirected to nodey, the ancestor
of x, with probability r (solid thick arrow). After Krapivsky and
Redner[7].
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unique path connects between any two nodes)—and not
much else can be controlled during the growth process, be-
yond the degree distribution exponent.

We generalize the redirection algorithm as follows.
At each time step the new noden is connected tom dif-
ferent preexisting nodes, with probabilitypm, m=1,2, . . .
sompm=1d. Each of them nodes is selected randomly and
independently by the same redirection trick as for a single
node: direct connection to the selected node with probability
1−r, or redirection to a random ancestor, with probabilityr.
The KR model corresponds to the choicepm=dm,1. The pres-
ence of an initial network seed, ofN0 nodes, is implied. The
seed allows for the process to get started.

A new node is added at each time step, so the total num-
ber of nodes increases as

Nstd = N0 + t. s2d

In the long time asymptotic limit oft@N0, Nstd, t. Because
each new node hasm ancestors with probabilitypm, the av-
erage number of ancestors of a node at timet is

kmlstd =
N0kml0 + t o mpm

N0 + t
, s3d

wherekml0 is the initial average number of ancestors present
in the seed. In the long time asymptotic limit,kml,ompm

;a. The average degree of a node(including both incoming
and outgoing links) is

kkl = 2kml , 2a. s4d

Consider nowNk
sldstd, the number of nodes of degreek that

possess exactlyl ancestors. It evolves according to

dNk
sldstd
dt

= o
m

mpmH s1 − rd
M0

fNk−1
sld − Nk

sldg

+
r

M
fsk − l − 1dNk−1

sld − sk − ldNk
sldgJ + pldk,l, k ù l ,

Nk
sld = 0, k , l . s5d

The first term inside the curly brackets describes gains and
losses due to direct connections(occurring with probability
1−r), while the additional terms refer to changes due to re-
direction: since the nodes in question havel ancestors, the
probability to reach a node of degreek by redirection is now
proportional tok− l, instead ofk−1, as in the original KR
model. Note that the number of ancestors of a node is fixed
at birth, and does not change subsequently. The rate for di-
rected connections is normalized byM0=olokNk

sld=N, t,
while for redirected events,

M = o
l

o
k

sk − ldNk
sld = NSkkl − o

l

Nsld

N
lD . s6d

In the long time asymptotic limitNsld /N→pl, hence M
,Nskkl−ad,at [9].

Due to the time dependence of the rates in Eq.(5), ana-
lytic integration is not feasible. Instead, we argue that the
transient time does not affect the ultimate distribution appre-

ciably, and replaceM0 andM by their long time asymptotic
limits. From here we proceed as in[7]. The asymptotic equa-
tions admit the general solutionNk

sldstd=nk
sldt, where

nk
sld = as1 − rdfnk−1

sld − nk
sldg

+ rfsk − l − 1dnk−1
sld − sk − ldnk

sldg + pldk,l, k ù l ,

nk
sld = 0, k , l . s7d

Note thatnk
sld is in fact normalized(sinceN, t) and repre-

sents theprobability that a randomly selected node be of
degreek and havel ancestors.

The solution of the recursions(7) is nk
sld=Pk8f1−s1

+rd / srk8+1+as1−rd−rl dg. Writing the product as the expo-
nential of a sum, expanding to first order in 1/k8 (for large
k8), and approximating the sum by an integral, one finally
obtains

nk
sld , k−s1+1/rd. s8d

The same is true for the overall degree distribution(without
reference to the number of ancestors),

Pskd = nk = o
l=1

k

nk
sld , k−s1+1/rd. s9d

This follows from Eqs.(7), summing overl, noting that
ollnk

sld=a, and proceeding as fornk
sld.

We now have at our disposal a simple local algorithm that
produces scale-free graphs of any desired degree exponent
l=1+1/r, as well as a set of parameters(the hpmj) that can
be tweaked at will to achieve a wide gamut of additional
attributes, without affectingl. Obvious examples include the
average number of outgoing links from a node,kml=ompm

=a, and the average node degree,kkl=2a. (Note that in the
original KR modela=1 is the only possible outcome.)

The degree distribution at smallk is determined by the
particular choice of thehpmj. This is dramatically illustrated
in Fig. 2, where we show the degree distribution of a net-
work grown with r =1/2 and pm=1/100 for m
=1,2, . . . ,100(pm=0 for m.100). In addition to the ex-
pected k−3 tail, we see a very distinct distribution, for
k,100. The resulting distribution is perfectly reproduced,
analytically, using Eqs.(7).

More importantly, the inverse problem is easily solved as

FIG. 2. Degree distribution of network constructed withpm

=1/100,m=1,2, . . . ,100, andr =0.5 (s). The analytical prediction
from Eqs.(7) and (9) (solid line) is shown for comparison.
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well. Given a specific distributionPskd, with a scale-free tail
,k−l, it can be produced by the redirection method in the
following way. Setr =1/sl−1d for the redirection probabil-
ity, thus ensuring the desired scale-free tail. Computea
=s1/2dokPskd that is implied by the desired distribution.
According to Eq.(7),

pm = f1 + as1 − rdgnm
smd. s10d

The requirednm
smd are computed iteratively, from Eqs.(7) and

(9). From (9) we haven1
s1d=Ps1d. Using this, and Eqs.(7),

for k=2, l =1, one can computen2
s1d, then obtainn2

s2d=Ps2d
−n2

s1d from (9), etc.
We have followed this procedure to compute thepm

needed to grow a network with the target distribution
Pskd=c, 2c, c, 2c, for k=1, 2, 3, 4, respectively, and
Pskd=2csk/4d−2.5, for kù4, (c=1/10.4359, is determined
from normalization:oPskd=1), shown in Fig. 3. As might be
expected, thepm decay rapidly withm (in this particular
case,pm,m−2.5) and a reasonably well-fitting distribution is
obtained with justmø4. Increasing the range ofm yields a
better fit to the target. Alternatively, a better fit can be
achieved, for a fixed range ofm, by treatinga as a variable
whose value is then optimized.

Another interesting property is the number and distribu-
tion of loops, or cycles, in the growing nets. One measure
of cycles is provided by theclustering index, defined for site
i as [11]

Ci =
Ei

1

2
kiski − 1d

. s11d

It denotes the ratio betweenEi, the actual number of links
between theki neighbors of the node, to the maximum num-
ber of links that would result had all theki nodes been con-
nected to one another. For trees, the clustering index is zero
at all nodes. In contrast, the proposed generalized KR pro-
cess can produce loops, and hence nonzero clustering, when-
ever a new node is connected to more than one site:p1,1
(or pm.0 for somem.1).

To test this issue we focused on the KR model, but where
a newly added node is further connected to a second node

with probability p: p1=1−p, p2=p (and pm=0 for m.2).
Several networks were grown in this way, with different val-
ues ofr andp. The numerical data strongly support the pre-
dicted relationl=1+1/r and the independence from thepm.

The results for clustering are summarized in Figs. 4 and 5.
In Fig. 4, we plot the ratio of the global cluster coefficient
(averaged over all the sites of the network), C, to the cluster
coefficient of an equivalent Erdős-Réniy(ER) graph[1,10],
CER, as a function ofp, for various values ofr. As might be
expected, the clustering index increases withp, though the
effect saturates rather quickly. A more pronounced effect is
achieved by increasingr, which changesC by orders of mag-
nitude (note the logarithmic scale). This has to do with the
influence ofr on the degree distribution. To see that, in Fig.
5 we plot, for the same data, the ratio ofC to Crand—the
clustering index in equivalent networks, with identical scale-
free degree distributions, but where all the connections have
been redistributed randomly. The dependence onr seems a
lot weaker by this comparison. Figure 5 demonstrates, how-
ever, significant differences between random scale-free net-
works and nets constructed by the generalized redirection
method.

As a final remark, we note that we have tacitly assumed
that the sethpmj is finite. Indeed, were the set infinite, there
would be no way to even start the growth process, unless one
had an infinitely large seed as well, since connecting a node
to m random nodes requires that there be at leastm nodes
present to begin with. One way to get around the limitation
to finite sets, is by allowing thepm to vary with time. Con-
sider, for example, the “self-consistent” networks grown with

FIG. 3. Convergence to a target distribution(s) for nets grown
with the analytically computedpm’s (inset). Shown are distributions
obtained for networks grown with just the first 4, 8, and 12pm’s
(solid curves). Convergence to the target distribution improves with
increasing range ofm.

FIG. 4. Clustering index,C, for nets constructed in the redirec-
tion method, withr =0.1,0.2, . . . ,0.9(bottom to top) and pm=s1
−pddm,1+pdm,2. Plotted isC/CER, whereCER is the clustering index
of the equivalent ER graphs[1,10].

FIG. 5. Clustering index for the same data as in Fig. 4, but
compared to equivalent scale-free random graphs(see text).
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pmstd=Psm,td, that is, where thepm reflect the existing de-
gree distribution at timet. The degree distribution that results
from this strategy, usingr =1/2, isshown in Fig. 6. We have
not attempted analyzing this distribution, because the equa-
tions involved are quite more complicated, and we cannot
think of any serious applications to this curious model. Still,
it remains an amusing problem that might test the limits of
the general approach of evolution equations.

We have presented a local strategy—the generalized redi-
rection method—for the growth of scale-free networks. Lo-
cal algorithms require information about only the immediate
environs of a visited node, and are more likely to reflect real
growth processes than global algorithms, where addition of
new nodes requires information about the whole network.
The generalized redirection technique includes a class of ex-
ternal parameters, thepm, that may be tuned at will, without
affecting the degree exponent(which is controlled by the
independent parameterr), to achieve a variety of effects. We
have explicitly demonstrated how to design nets with arbi-
trary degree distributions, at small degreek, and power-law
(scale-free) tails, at largek. We have also shown that addi-
tional attributes, such as the degree of clustering, can be
manipulated by a proper choice of the model’s parameters.
However, how to do this effectively remains an open ques-
tion. We anticipate that analogous algorithms to the one pre-
sented for the degree distribution can be designed for other
attributes as well, by studying the relevant rate equations.
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